GraSS: Graph Neural Networks for Loop Closure Detection with Semantic and Spatial Assistance

Shihang Lu, Zhuolin Peng, Zhuoling Xiao*, Bo Yan, Shuisheng Lin, Sheng Yu, Di He

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Loop Closure Detection (LCD) is an essential part of minimizing drift due to the accumulation of previously pose errors in Simultaneous Localization and Mapping (SLAM). The existing loop detection methods are limited by the changes of external conditions such as illumination, viewpoint and appearance. Previous work has mainly focused on the feature descriptor matching methods, which usually only consider the keypoints themselves. Here, we propose a fusion method GraSS, which uses the Graph Neural Network (GNN) based on visual features, and introduces semantics and depth, so as to enhance the spatial characteristics of the keypoints and the information correlation between them in the graph. Furthermore, a learnable parameter is added when two keypoints share the same semantic labels, their matching scores are increased, mitigating to some extent the issue of mismatch caused by significant differences in external conditions between two keypoints that should ideally be paired. Our findings show that GraSS has better performance than other state-of-the-art LCD methods when facing obvious illumination, appearance changes and slight viewpoint changes.

Original languageEnglish
Title of host publicationISCAS 2024 - IEEE International Symposium on Circuits and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350330991
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 - Singapore, Singapore
Duration: 19 May 202422 May 2024

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
ISSN (Print)0271-4310

Conference

Conference2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
Country/TerritorySingapore
CitySingapore
Period19/05/2422/05/24

Keywords

  • feature fusion
  • loop closure detection
  • semantic scene understanding
  • simultaneous localization and mapping

Fingerprint

Dive into the research topics of 'GraSS: Graph Neural Networks for Loop Closure Detection with Semantic and Spatial Assistance'. Together they form a unique fingerprint.

Cite this