Fusing appearance features and correlation features for face video retrieval

Chenchen Jing, Zhen Dong, Mingtao Pei*, Yunde Jia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Face video retrieval has drawn considerable research attention recently. Most prior research mainly focused on either appearance features or correlation features, which could degrade retrieval performance. In this paper, we fuse appearance features and correlation features to exploit rich information of face videos for face video retrieval via a deep convolutional neural network. The network extracts appearance feature and correlation feature from a frame and the covariance matrix of a face video, respectively, and fuses them to obtain a comprehensive video representation. The fused feature is projected to a low-dimensional Hamming space via hash functions for the retrieval task. The network integrates feature extractions, feature fusion, and hash learning into a unified optimization framework to guarantee optimal compatibility of appearance features and correlation features. Experiments on two challenging TV-Series datasets demonstrate the effectiveness of the proposed method.

Original languageEnglish
Title of host publicationAdvances in Multimedia Information Processing – PCM 2017 - 18th Pacific-Rim Conference on Multimedia, Revised Selected Papers
EditorsBing Zeng, Hongliang Li, Qingming Huang, Abdulmotaleb El Saddik, Shuqiang Jiang, Xiaopeng Fan
PublisherSpringer Verlag
Pages150-160
Number of pages11
ISBN (Print)9783319773827
DOIs
Publication statusPublished - 2018
Event18th Pacific-Rim Conference on Multimedia, PCM 2017 - Harbin, China
Duration: 28 Sept 201729 Sept 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10736 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th Pacific-Rim Conference on Multimedia, PCM 2017
Country/TerritoryChina
CityHarbin
Period28/09/1729/09/17

Keywords

  • Appearance features
  • Correlation features
  • Deep CNN
  • Face video retrieval

Fingerprint

Dive into the research topics of 'Fusing appearance features and correlation features for face video retrieval'. Together they form a unique fingerprint.

Cite this