Focused Large Language Models are Stable Many-Shot Learners

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Heda Wang, Yao Hu, Kan Li*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In-Context Learning (ICL) enables large language models (LLMs) to achieve rapid task adaptation by learning from demonstrations. With the increase in available context length of LLMs, recent experiments have shown that the performance of ICL does not necessarily scale well in many-shot (demonstration) settings. We theoretically and experimentally confirm that the reason lies in more demonstrations dispersing the model attention from the query, hindering its understanding of key content. Inspired by how humans learn from examples, we propose a training-free method FOCUSICL, which conducts triviality filtering to avoid attention being diverted by unimportant contents at token-level and operates hierarchical attention to further ensure sufficient attention towards current query at demonstration-level. We also design an efficient hyperparameter searching strategy for FOCUSICL based on model perplexity of demonstrations. Comprehensive experiments validate that FOCUSICL achieves an average performance improvement of 5.2% over vanilla ICL and scales well with many-shot demonstrations.

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages6247-6261
Number of pages15
ISBN (Electronic)9798891761643
DOIs
Publication statusPublished - 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: 12 Nov 202416 Nov 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period12/11/2416/11/24

Cite this