TY - JOUR
T1 - Flow Characterisation Using Fibre Bragg Gratings and Their Potential Use in Nuclear Thermal Hydraulics Experiments
AU - Plows, Harvey Oliver
AU - Li, Jinfeng
AU - Dahlfors, Marcus
AU - Margulis, Marat
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/12
Y1 - 2023/12
N2 - With the ever-increasing role that nuclear power is playing to meet the aim of net zero carbon emissions, there is an intensified demand for understanding the thermal hydraulic phenomena at the heart of current and future reactor concepts. In response to this demand, the development of high-resolution flow analysis instrumentation is of increased importance. One such under-utilised and under-researched instrumentation technology, in the context of fluid flow analysis, is fibre Bragg grating (FBG)-based sensors. This technology allows for the construction of simple, minimally invasive instruments that are resistant to high temperatures, high pressures and corrosion, while being adaptable to measure a wide range of fluid properties, including temperature, pressure, refractive index, chemical concentration, flow rate and void fraction—even in opaque media. Furthermore, concertinaing FBG arrays have been developed capable of reconstructing 3D images of large phase structures, such as bubbles in slug flow, that interact with the array. Currently a significantly under-explored application, FBG-based instrumentation thus shows great potential for utilisation in experimental thermal hydraulics; expanding the available flow characterisation and imaging technologies. Therefore, this paper will present an overview of current FBG-based flow characterisation technologies, alongside a systematic review of how these techniques have been utilised in nuclear thermal hydraulics experiments. Finally, a discussion will be presented regarding how these techniques can be further developed and used in nuclear research.
AB - With the ever-increasing role that nuclear power is playing to meet the aim of net zero carbon emissions, there is an intensified demand for understanding the thermal hydraulic phenomena at the heart of current and future reactor concepts. In response to this demand, the development of high-resolution flow analysis instrumentation is of increased importance. One such under-utilised and under-researched instrumentation technology, in the context of fluid flow analysis, is fibre Bragg grating (FBG)-based sensors. This technology allows for the construction of simple, minimally invasive instruments that are resistant to high temperatures, high pressures and corrosion, while being adaptable to measure a wide range of fluid properties, including temperature, pressure, refractive index, chemical concentration, flow rate and void fraction—even in opaque media. Furthermore, concertinaing FBG arrays have been developed capable of reconstructing 3D images of large phase structures, such as bubbles in slug flow, that interact with the array. Currently a significantly under-explored application, FBG-based instrumentation thus shows great potential for utilisation in experimental thermal hydraulics; expanding the available flow characterisation and imaging technologies. Therefore, this paper will present an overview of current FBG-based flow characterisation technologies, alongside a systematic review of how these techniques have been utilised in nuclear thermal hydraulics experiments. Finally, a discussion will be presented regarding how these techniques can be further developed and used in nuclear research.
KW - fibre Bragg gratings
KW - flow characterisation
KW - multiphase flows
KW - nuclear thermal hydraulics
UR - http://www.scopus.com/inward/record.url?scp=85208134667&partnerID=8YFLogxK
U2 - 10.3390/jne4040042
DO - 10.3390/jne4040042
M3 - Review article
AN - SCOPUS:85208134667
SN - 2673-4362
VL - 4
SP - 668
EP - 690
JO - Journal of Nuclear Engineering
JF - Journal of Nuclear Engineering
IS - 4
ER -