TY - GEN
T1 - FloNa
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
AU - Li, Jiaxin
AU - Huang, Weiqi
AU - Wang, Zan
AU - Liang, Wei
AU - Di, Huijun
AU - Liu, Feng
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plans into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect 20k navigation episodes across 117 scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge.
AB - Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plans into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect 20k navigation episodes across 117 scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge.
UR - http://www.scopus.com/inward/record.url?scp=105003993414&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i14.33601
DO - 10.1609/aaai.v39i14.33601
M3 - Conference contribution
AN - SCOPUS:105003993414
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 14610
EP - 14618
BT - Special Track on AI Alignment
A2 - Walsh, Toby
A2 - Shah, Julie
A2 - Kolter, Zico
PB - Association for the Advancement of Artificial Intelligence
Y2 - 25 February 2025 through 4 March 2025
ER -