Fine-grained product features extraction and categorization in reviews opinion mining

Sheng Huang*, Xinlan Liu, Xueping Peng, Zhendong Niu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

54 Citations (Scopus)

Abstract

With the growth of user-generated contents on the Web, product reviews opinion mining increasingly becomes a research practice of great value to e-commerce, search and recommendation. Unfortunately, the number of reviews is rising up to hundreds or even thousands, especially for some popular items, which makes it a laborious work for the potential buyers and the manufacturers to read through them to make a wise decision. Besides, the free format and the uncertainty of reviews expressions, make fine-grained product features extraction and categorization a more difficult task than traditional information extraction techniques. In this work, we propose to treat product feature extraction as a sequence labeling task and employ a discriminative learning model using Conditional Random Fields (CRFs) to tackle it. We innovatively incorporate the part-of-speech features and the sentence structure features into the CRFs learning process. For product feature categorization, we introduce the semantic knowledge-based and distributional context-based similarity measures to calculate the similarities between product feature expressions, then an effective graph pruning based categorizing algorithm is proposed to classify the collection of feature expressions into different semantic groups. The empirical studies have proved the effectiveness and efficiency of our approaches compared with other counterpart methods.

Original languageEnglish
Title of host publicationProceedings - 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012
Pages680-686
Number of pages7
DOIs
Publication statusPublished - 2012
Event12th IEEE International Conference on Data Mining Workshops, ICDMW 2012 - Brussels, Belgium
Duration: 10 Dec 201210 Dec 2012

Publication series

NameProceedings - 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012

Conference

Conference12th IEEE International Conference on Data Mining Workshops, ICDMW 2012
Country/TerritoryBelgium
CityBrussels
Period10/12/1210/12/12

Keywords

  • Conditional random fields
  • Extraction and categorization
  • Product features
  • Similarity calculation

Fingerprint

Dive into the research topics of 'Fine-grained product features extraction and categorization in reviews opinion mining'. Together they form a unique fingerprint.

Cite this