Filtration-Enhanced Graph Transformation

Zijian Chen, Rong Hua Li*, Hongchao Qin, Huanzhong Duan, Yanxiong Lu, Qiangqiang Dai, Guoren Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Graph kernels and graph neural networks (GNNs) are widely used for the classification of graph data. However, many existing graph kernels and GNNs have limited expressive power, because they cannot distinguish graphs if the classic 1-dimensional Weisfeiler-Leman (1-WL) algorithm does not distinguish them. To break the 1-WL expressiveness barrier, we propose a novel method called filtration-enhanced graph transformation, which is based on a concept from the area of topological data analysis. In a nutshell, our approach first transforms each original graph into a filtration-enhanced graph based on a certain pre-defined filtration operation, and then uses the transformed graphs as the inputs for graph kernels or GNNs. The striking feature of our approach is that it is a plug-in method and can be applied in any graph kernel and GNN to enhance their expressive power. We theoretically and experimentally demonstrate that our solutions exhibit significantly better performance than the state-of-the art solutions for graph classification tasks.

Original languageEnglish
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1987-1993
Number of pages7
ISBN (Electronic)9781956792003
DOIs
Publication statusPublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: 23 Jul 202229 Jul 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period23/07/2229/07/22

Fingerprint

Dive into the research topics of 'Filtration-Enhanced Graph Transformation'. Together they form a unique fingerprint.

Cite this