Fast Maximal Clique Enumeration on Uncertain Graphs: A Pivot-based Approach

Qiangqiang Dai, Rong Hua Li, Meihao Liao, Hongzhi Chen, Guoren Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

Maximal clique enumeration on uncertain graphs is a fundamental problem in uncertain graph analysis. In this paper, we study a problem of enumerating all maximal (k,n)-cliques on an uncertain graph G, where a vertex set H of G is a maximal (k,n)-clique if (1) H (|H| ≥ k) is a clique with probability no less than n, and (2) H is a maximal vertex set satisfying (1). The state-of-the-art algorithms for enumerating all maximal (k,n)-cliques are based on a set enumeration technique which are often very costly. This is because the set enumeration based techniques may explore all subsets of a maximal (k,n)-clique, thus resulting in many unnecessary computations. To overcome this issue, we propose several novel and efficient pivot-based algorithms to enumerate all maximal (k,n)-cliques based on a newly-developed pivot-based pruning principle. Our pivot-based pruning principle is very general which can be applied to speed up the enumeration of any maximal subgraph that satisfies a hereditary property. Here the hereditary property means that if a maximal subgraph H satisfies a property P, any subgraph of H also meets P. To the best of our knowledge, our work is the first to systematically explore the idea of pivot for maximal clique enumeration on uncertain graphs. In addition, we also develop a nontrivial size-constraint based pruning technique and a new graph reduction technique to further improve the efficiency. Extensive experiments on nine real-world graphs demonstrate the efficiency, effectiveness, and scalability of the proposed algorithms.

Original languageEnglish
Title of host publicationSIGMOD 2022 - Proceedings of the 2022 International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages2034-2047
Number of pages14
ISBN (Electronic)9781450392495
DOIs
Publication statusPublished - 10 Jun 2022
Event2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022 - Virtual, Online, United States
Duration: 12 Jun 202217 Jun 2022

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Conference

Conference2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022
Country/TerritoryUnited States
CityVirtual, Online
Period12/06/2217/06/22

Keywords

  • graph mining
  • maximal clique
  • pivot enumeration
  • uncertain graph

Fingerprint

Dive into the research topics of 'Fast Maximal Clique Enumeration on Uncertain Graphs: A Pivot-based Approach'. Together they form a unique fingerprint.

Cite this