Abstract
To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.
| Original language | English |
|---|---|
| Pages (from-to) | 291-297 |
| Number of pages | 7 |
| Journal | Journal of Beijing Institute of Technology (English Edition) |
| Volume | 24 |
| Issue number | 3 |
| DOIs | |
| Publication status | Published - 1 Sept 2015 |
Keywords
- Extended trajectory shaping guidance law
- First-order autopilot
- Guidance performance
- Time-to-go