TY - GEN
T1 - Exploring Cross-Image Pixel Contrast for Semantic Segmentation
AU - Wang, Wenguan
AU - Zhou, Tianfei
AU - Yu, Fisher
AU - Dai, Jifeng
AU - Konukoglu, Ender
AU - Van Gool, Luc
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Current semantic segmentation methods focus only on mining “local” context, i.e., dependencies between pixels within individual images, by context-aggregation modules (e.g., dilated convolution, neural attention) or structure-aware optimization criteria (e.g., IoU-like loss). However, they ignore “global” context of the training data, i.e., rich semantic relations between pixels across different images. Inspired by recent advance in unsupervised contrastive representation learning, we propose a pixel-wise contrastive algorithm for semantic segmentation in the fully supervised setting. The core idea is to enforce pixel embeddings belonging to a same semantic class to be more similar than embeddings from different classes. It raises a pixel-wise metric learning paradigm for semantic segmentation, by explicitly exploring the structures of labeled pixels, which were rarely explored before. Our method can be effortlessly incorporated into existing segmentation frameworks without extra overhead during testing. We experimentally show that, with famous segmentation models (i.e., DeepLabV3, HRNet, OCR) and backbones (i.e., ResNet, HRNet), our method brings performance improvements across diverse datasets (i.e., Cityscapes, PASCAL-Context, COCO-Stuff, CamVid). We expect this work will encourage our community to rethink the current de facto training paradigm in semantic segmentation.
AB - Current semantic segmentation methods focus only on mining “local” context, i.e., dependencies between pixels within individual images, by context-aggregation modules (e.g., dilated convolution, neural attention) or structure-aware optimization criteria (e.g., IoU-like loss). However, they ignore “global” context of the training data, i.e., rich semantic relations between pixels across different images. Inspired by recent advance in unsupervised contrastive representation learning, we propose a pixel-wise contrastive algorithm for semantic segmentation in the fully supervised setting. The core idea is to enforce pixel embeddings belonging to a same semantic class to be more similar than embeddings from different classes. It raises a pixel-wise metric learning paradigm for semantic segmentation, by explicitly exploring the structures of labeled pixels, which were rarely explored before. Our method can be effortlessly incorporated into existing segmentation frameworks without extra overhead during testing. We experimentally show that, with famous segmentation models (i.e., DeepLabV3, HRNet, OCR) and backbones (i.e., ResNet, HRNet), our method brings performance improvements across diverse datasets (i.e., Cityscapes, PASCAL-Context, COCO-Stuff, CamVid). We expect this work will encourage our community to rethink the current de facto training paradigm in semantic segmentation.
UR - https://www.scopus.com/pages/publications/85114329270
U2 - 10.1109/ICCV48922.2021.00721
DO - 10.1109/ICCV48922.2021.00721
M3 - Conference contribution
AN - SCOPUS:85114329270
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 7283
EP - 7293
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -