Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations

Xin Wang, Zilong Zhang*, Xing Fu, Adnan Khan, Suyi Zhao, Yuan Gao, Yuchen Jie, Wei He, Xiaotian Li, Qiang Liu*, Changming Zhao

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)

Abstract

Spatial patterns are a significant characteristic of lasers. The knowledge of spatial patterns of structured laser beams is rapidly expanding, along with the progress of studies on laser physics and technology. Particularly in the last decades, owing to the in-depth attention on structured light with multiple degrees of freedom, the research on spatial and spatiotemporal structures of laser beams has been promptly developed. Such beams have hatched various breakthroughs in many fields, including imaging, microscopy, metrology, communication, optical trapping, and quantum information processing. Here, we would like to provide an overview of the extensive research on several areas relevant to spatial patterns of structured laser beams, from spontaneous organization to multiple transformations. These include the early theory of beam pattern formation based on the Maxwell–Bloch equations, the recent eigenmodes superposition theory based on the time-averaged Helmholtz equations, the beam patterns extension of ultrafast lasers to the spatiotemporal beam structures, and the structural transformations in the nonlinear frequency conversion process of structured beams.

Original languageEnglish
Article number024001
JournalAdvanced Photonics Nexus
Volume2
Issue number2
DOIs
Publication statusPublished - 1 Mar 2023
Externally publishedYes

Keywords

  • nonlinear optics
  • spatial patterns
  • spatiotemporal beams
  • structured laser beams
  • transverse modes

Fingerprint

Dive into the research topics of 'Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations'. Together they form a unique fingerprint.

Cite this