Event-Diffusion: Event-Based Image Reconstruction and Restoration with Diffusion Models

Quanmin Liang, Xiawu Zheng, Kai Huang*, Yan Zhang, Jie Chen, Yonghong Tian*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Event cameras offer the advantages of low latency, high temporal resolution and HDR compared to conventional cameras. Due to the asynchronous and sparse nature of events, many existing algorithms cannot be directly applied, necessitating the reconstruction of intensity frames. However, existing reconstruction methods often result in artifacts and edge blurring due to noise and event accumulation. In this paper, we argue that the key to event-based image reconstruction is to enhance the edge information of objects and restore the artifacts in the reconstructed images. To explain, edge information is one of the most important features in the event stream, providing information on the shape and contour of objects. Considering the extraordinary capabilities of Denoising Diffusion Probabilistic Models (DDPMs) in image generation, reconstruction, and restoration, we propose a new framework which incorporate it into the reconstruction pipeline to obtain high-quality results which effectively remove artifacts and blur in reconstructed images. Specifically, we first extract edge information from the event stream using the proposed event-based denoising method. It employs the contrast maximization framework to remove noise from the event stream and extract clear object edge information. And then, the edge information is further adopted to our diffusion model, which is used to enhance the edges of objects in the reconstructed images, thus improving the restoration effect. Experimental results show that our method achieves significant improvements in the mean squared error (MSE), the structural similarity (SSIM), and the perceptual similarity (LPIPS) metrics, with average improvements of 40%, 15%, and 25%, respectively, compared to previous state-of-the-art models, and has good generalization performance.

Original languageEnglish
Title of host publicationMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages3837-3846
Number of pages10
ISBN (Electronic)9798400701085
DOIs
Publication statusPublished - 26 Oct 2023
Externally publishedYes
Event31st ACM International Conference on Multimedia, MM 2023 - Ottawa, Canada
Duration: 29 Oct 20233 Nov 2023

Publication series

NameMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

Conference

Conference31st ACM International Conference on Multimedia, MM 2023
Country/TerritoryCanada
CityOttawa
Period29/10/233/11/23

Keywords

  • diffusion model
  • event camera
  • intensity images reconstruction

Fingerprint

Dive into the research topics of 'Event-Diffusion: Event-Based Image Reconstruction and Restoration with Diffusion Models'. Together they form a unique fingerprint.

Cite this