TY - JOUR
T1 - Evaluating the factors affecting qoe of 360-degree videos and cybersickness levels predictions in virtual reality
AU - Anwar, Muhammad Shahid
AU - Wang, Jing
AU - Ahmad, Sadique
AU - Ullah, Asad
AU - Khan, Wahab
AU - Fei, Zesong
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9
Y1 - 2020/9
N2 - 360-degree Virtual Reality (VR) videos have already taken up viewers’ attention by storm. Despite the immense attractiveness and hype, VR conveys a loathsome side effect called “cybersickness” that often creates significant discomfort to the viewers. It is of great importance to evaluate the factors that induce cybersickness symptoms and its deterioration on the end user’s Quality-of-Experience (QoE) when visualizing 360-degree videos in VR. This manuscript’s intent is to subjectively investigate factors of high priority that affect a user’s QoE in terms of perceptual quality, presence, and cybersickness. The content type (fast, medium, and slow), the effect of camera motion (fixed, horizontal, and vertical), and the number of moving targets (none, single, and multiple) in a video can be the factors that may affect the QoE. The significant effect of such factors on end-user QoE under various stalling events (none, single, and multiple) is evaluated in a subjective experiment. The results from subjective experiments show a notable impact of these factors on end-user QoE. Finally, to label the viewing safety concern in VR, we propose a neural network-based QoE prediction method that can predict the degree of cybersickness influenced by 360-degree videos under various stalling events in VR. The performance accuracy of the proposed method is then compared against well-known Machine Learning (ML) algorithms and existing QoE prediction models. The proposed method achieved a 90% prediction accuracy rate and performed well against existing models and other ML methods.
AB - 360-degree Virtual Reality (VR) videos have already taken up viewers’ attention by storm. Despite the immense attractiveness and hype, VR conveys a loathsome side effect called “cybersickness” that often creates significant discomfort to the viewers. It is of great importance to evaluate the factors that induce cybersickness symptoms and its deterioration on the end user’s Quality-of-Experience (QoE) when visualizing 360-degree videos in VR. This manuscript’s intent is to subjectively investigate factors of high priority that affect a user’s QoE in terms of perceptual quality, presence, and cybersickness. The content type (fast, medium, and slow), the effect of camera motion (fixed, horizontal, and vertical), and the number of moving targets (none, single, and multiple) in a video can be the factors that may affect the QoE. The significant effect of such factors on end-user QoE under various stalling events (none, single, and multiple) is evaluated in a subjective experiment. The results from subjective experiments show a notable impact of these factors on end-user QoE. Finally, to label the viewing safety concern in VR, we propose a neural network-based QoE prediction method that can predict the degree of cybersickness influenced by 360-degree videos under various stalling events in VR. The performance accuracy of the proposed method is then compared against well-known Machine Learning (ML) algorithms and existing QoE prediction models. The proposed method achieved a 90% prediction accuracy rate and performed well against existing models and other ML methods.
KW - 360-degree videos
KW - ANN
KW - Cybersickness
KW - Quality of experience
KW - Virtual reality
UR - http://www.scopus.com/inward/record.url?scp=85091898925&partnerID=8YFLogxK
U2 - 10.3390/electronics9091530
DO - 10.3390/electronics9091530
M3 - Article
AN - SCOPUS:85091898925
SN - 2079-9292
VL - 9
SP - 1
EP - 20
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 9
M1 - 1530
ER -