TY - JOUR
T1 - Enhanced Photodetection Performance of InBiSe3/ReS2 Polarization-Sensitive Heterostructure Photodetectors
AU - Quan, Sufeng
AU - Guo, Shuai
AU - Zhao, Xiaoyu
AU - Weller, Dieter
AU - Wang, Xuefeng
AU - Li, Li
AU - Fu, Shiyou
AU - Liu, Ruibin
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2025/1/8
Y1 - 2025/1/8
N2 - Individual anisotropic two-dimensional (2D) materials have been widely applied for developing polarization-sensitive photodetectors, but they often suffer from limitations in photoresponsivity, detection range, etc. To overcome these challenges, van der Waals (vdW) heterostructures created by stacking different 2D materials provide a promising solution to enhance the performance of the photoelectronic device. In this work, a novel polarization-sensitive photodetector is developed by leveraging a heterojunction formed by InBiSe3 and anisotropic ReS2 nanoflakes. The InBiSe3/ReS2 vdW heterostructure devices exhibit excellent photodetection performance with a high photoresponsivity (R) of 7.68 A W−1 and a specific detectivity (D*) up to 1.26 × 1011 Jones as well as an external quantum efficiency (EQE) of 1790% under 532 nm laser irradiation. Additionally, benefiting from the broadband light absorption of InBiSe3 crystals together with the pronounced anisotropic electronic and optical characteristics of ReS2 flakes, the devices demonstrate a broad spectral response range from 402 to 1006 nm with a distinct polarization sensitivity of 1.24. Moreover, the devices exhibit extraordinary optical communication and high contrast polarimetric imaging capacity. This work demonstrates the enhanced photodetection performance with the InBiSe3/ReS2 vdW heterostructures operating in a photoconductive mode and illustrates promising application of these heterostructures in integrated optoelectronic systems.
AB - Individual anisotropic two-dimensional (2D) materials have been widely applied for developing polarization-sensitive photodetectors, but they often suffer from limitations in photoresponsivity, detection range, etc. To overcome these challenges, van der Waals (vdW) heterostructures created by stacking different 2D materials provide a promising solution to enhance the performance of the photoelectronic device. In this work, a novel polarization-sensitive photodetector is developed by leveraging a heterojunction formed by InBiSe3 and anisotropic ReS2 nanoflakes. The InBiSe3/ReS2 vdW heterostructure devices exhibit excellent photodetection performance with a high photoresponsivity (R) of 7.68 A W−1 and a specific detectivity (D*) up to 1.26 × 1011 Jones as well as an external quantum efficiency (EQE) of 1790% under 532 nm laser irradiation. Additionally, benefiting from the broadband light absorption of InBiSe3 crystals together with the pronounced anisotropic electronic and optical characteristics of ReS2 flakes, the devices demonstrate a broad spectral response range from 402 to 1006 nm with a distinct polarization sensitivity of 1.24. Moreover, the devices exhibit extraordinary optical communication and high contrast polarimetric imaging capacity. This work demonstrates the enhanced photodetection performance with the InBiSe3/ReS2 vdW heterostructures operating in a photoconductive mode and illustrates promising application of these heterostructures in integrated optoelectronic systems.
KW - InBiSe/ReS heterostructure
KW - optical communication
KW - photoconductive photodetector
KW - polarimetric imaging
KW - polarization-sensitive photodetection
UR - http://www.scopus.com/inward/record.url?scp=85207322270&partnerID=8YFLogxK
U2 - 10.1002/smll.202406148
DO - 10.1002/smll.202406148
M3 - Article
C2 - 39468911
AN - SCOPUS:85207322270
SN - 1613-6810
VL - 21
JO - Small
JF - Small
IS - 1
M1 - 2406148
ER -