TY - GEN
T1 - Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Distributed Deep Reinforcement Learning
AU - Wang, Hao
AU - Liu, Chi Harold
AU - Dai, Zipeng
AU - Tang, Jian
AU - Wang, Guoren
N1 - Publisher Copyright:
© 2021 ACM.
PY - 2021/8/14
Y1 - 2021/8/14
N2 - Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called "DisasterSim", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.
AB - Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called "DisasterSim", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.
KW - disaster response
KW - distributed deep reinforcement learning
KW - energy-efficiency
KW - vehicular crowdsourcing
UR - https://www.scopus.com/pages/publications/85114907857
U2 - 10.1145/3447548.3467070
DO - 10.1145/3447548.3467070
M3 - Conference contribution
AN - SCOPUS:85114907857
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 3679
EP - 3687
BT - KDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Y2 - 14 August 2021 through 18 August 2021
ER -