TY - GEN
T1 - End-to-end quantum-like language models with application to question answering
AU - Zhang, Peng
AU - Niu, Jiabin
AU - Su, Zhan
AU - Wang, Benyou
AU - Ma, Liqun
AU - Song, Dawei
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Language Modeling (LM) is a fundamental research topic in a range of areas. Recently, inspired by quantum theory, a novel Quantum Language Model (QLM) has been proposed for Information Retrieval (IR). In this paper, we aim to broaden the theoretical and practical basis of QLM. We develop a Neural Network based Quantum-like Language Model (NNQLM) and apply it to Question Answering. Specifically, based on word embeddings, we design a new density matrix, which represents a sentence (e.g., a question or an answer) and encodes a mixture of semantic subspaces. Such a density matrix, together with a joint representation of the question and the answer, can be integrated into neural network architectures (e.g., 2-dimensional convolutional neural networks). Experiments on the TREC-QA and WIKIQA datasets have verified the effectiveness of our proposed models.
AB - Language Modeling (LM) is a fundamental research topic in a range of areas. Recently, inspired by quantum theory, a novel Quantum Language Model (QLM) has been proposed for Information Retrieval (IR). In this paper, we aim to broaden the theoretical and practical basis of QLM. We develop a Neural Network based Quantum-like Language Model (NNQLM) and apply it to Question Answering. Specifically, based on word embeddings, we design a new density matrix, which represents a sentence (e.g., a question or an answer) and encodes a mixture of semantic subspaces. Such a density matrix, together with a joint representation of the question and the answer, can be integrated into neural network architectures (e.g., 2-dimensional convolutional neural networks). Experiments on the TREC-QA and WIKIQA datasets have verified the effectiveness of our proposed models.
UR - http://www.scopus.com/inward/record.url?scp=85060449692&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060449692
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 5666
EP - 5673
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -