TY - JOUR
T1 - Efficient energy and memory storage capabilities in optimized BiFeO3/MnMoO4/NiFe2O4 triphasic composites for futuristic multistate devices
AU - Sagheer, Izhar
AU - Ansar, Muhammad Tamoor
AU - Ramay, Shahid M.
AU - Huang, Houbing
AU - Atiq, Shahid
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/9/16
Y1 - 2024/9/16
N2 - The emergence of multiferroic materials particularly bismuth iron oxide (BiFeO3) with distinctive magnetoelectric, and high energy storage capabilities, present pivotal aspects for next-generation memory storage devices. However, intrinsically weak magnetoelectric coupling limits their widespread applications, that can be leap over by the integration of BiFeO3 with enriched ferroelectric, and ferro/ferrimagnetic materials. Here, a series (1 − x)[0.7BiFeO3 + 0.3MnMoO4] + xNiFe2O4 (x = 0.00, 0.03, 0.06, and 0.09) is synthesized via citrate-gel based self-ignition, and solid-state reaction routes. Phase purity and crystallinity of tri-phase composites with surfaces revealing random and arbitrarily shaped grains are assured by X-ray diffraction, and field emission scanning electron microscopy, respectively. Dielectric studies illustrated non-linear trend for broad range of frequencies as predicted by Maxwell-Wagner theory along with single semicircle arcs in Nyquist plots that exposes grain boundaries effect. An enriched 68.42% of ferroelectric efficiency is featured for x = 0.06 substitutional contents, while magnetic computations demonstrated improved saturation magnetization (Ms), remanence magnetization (Mr), and coercive applied magnetic field (Hc) values as 5.87 emu g−1, 0.96 emu g−1, and 215.19 Oe, respectively for x = 0.09 phase-fraction. The intriguing linear trends of magnetoelectric coupling for all the compositions are corroborating them propitious contenders for futuristic multistate devices.
AB - The emergence of multiferroic materials particularly bismuth iron oxide (BiFeO3) with distinctive magnetoelectric, and high energy storage capabilities, present pivotal aspects for next-generation memory storage devices. However, intrinsically weak magnetoelectric coupling limits their widespread applications, that can be leap over by the integration of BiFeO3 with enriched ferroelectric, and ferro/ferrimagnetic materials. Here, a series (1 − x)[0.7BiFeO3 + 0.3MnMoO4] + xNiFe2O4 (x = 0.00, 0.03, 0.06, and 0.09) is synthesized via citrate-gel based self-ignition, and solid-state reaction routes. Phase purity and crystallinity of tri-phase composites with surfaces revealing random and arbitrarily shaped grains are assured by X-ray diffraction, and field emission scanning electron microscopy, respectively. Dielectric studies illustrated non-linear trend for broad range of frequencies as predicted by Maxwell-Wagner theory along with single semicircle arcs in Nyquist plots that exposes grain boundaries effect. An enriched 68.42% of ferroelectric efficiency is featured for x = 0.06 substitutional contents, while magnetic computations demonstrated improved saturation magnetization (Ms), remanence magnetization (Mr), and coercive applied magnetic field (Hc) values as 5.87 emu g−1, 0.96 emu g−1, and 215.19 Oe, respectively for x = 0.09 phase-fraction. The intriguing linear trends of magnetoelectric coupling for all the compositions are corroborating them propitious contenders for futuristic multistate devices.
UR - http://www.scopus.com/inward/record.url?scp=85204356096&partnerID=8YFLogxK
U2 - 10.1039/d4ra05223d
DO - 10.1039/d4ra05223d
M3 - Article
AN - SCOPUS:85204356096
SN - 2046-2069
VL - 14
SP - 29260
EP - 29270
JO - RSC Advances
JF - RSC Advances
IS - 40
ER -