Abstract
This paper investigates the problem of designing angle constraint guidance law against unknown maneuvering targets based on discrete-time sliding mode control theory. Invoking the fact that the future course of action of the target, an independent entity, cannot be predicted beforehand due to its complexity and unpredictability, a model-assisted discrete-time disturbance observer in cooperation with a singularity-free strategy is proposed first to estimate the target maneuver. Based on the reconstructed signal and a fast convergence time-varying sliding surface, a new chattering-mitigated super-twisting-like discrete-time impact angle constraint guidance law is then synthesized. Stability analysis shows that the closed-loop system trajectory can be forced to enter into a small region around the sliding surface. Simulations and comparisons with classical discrete-time sliding mode guidance law validate the effectiveness of the proposed guidance law.
Original language | English |
---|---|
Article number | 1764510 |
Journal | International Journal of Aerospace Engineering |
Volume | 2020 |
DOIs | |
Publication status | Published - 2020 |