Diffusion-Promoted HDR Video Reconstruction

Yuanshen Guan, Ruikang Xu, Mingde Yao, Ruisheng Gao, Lizhi Wang, Zhiwei Xiong*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

High dynamic range (HDR) video reconstruction aims to generate HDR videos from low dynamic range (LDR) frames captured with alternating exposures. Most existing works solely rely on the regression-based paradigm, leading to adverse effects such as ghosting artifacts and missing details in saturated regions. In this paper, we propose a diffusion-promoted method for HDR video reconstruction, termed HDR-V-Diff, which incorporates a diffusion model to capture the HDR distribution. As such, HDR-V-Diff can reconstruct HDR videos with realistic details while alleviating ghosting artifacts. However, the direct introduction of video diffusion models would impose massive computational burden. Instead, to alleviate this burden, we first propose an HDR Latent Diffusion Model (HDR-LDM) to learn the distribution prior of single HDR frames. Specifically, HDR-LDM incorporates a tonemapping strategy to compress HDR frames into the latent space and a novel exposure embedding to aggregate the exposure information into the diffusion process. We then propose a Temporal-Consistent Alignment Module (TCAM) to learn the temporal information as a complement for HDR-LDM, which conducts coarse-to-fine feature alignment at different scales among video frames. Finally, we design a Zero-Init Cross-Attention (ZiCA) mechanism to effectively integrate the learned distribution prior and temporal information for generating HDR frames. Extensive experiments validate that HDR-V-Diff achieves state-of-the-art results on several representative datasets.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 Workshops, Proceedings
EditorsAlessio Del Bue, Cristian Canton, Jordi Pont-Tuset, Tatiana Tommasi
PublisherSpringer Science and Business Media Deutschland GmbH
Pages20-38
Number of pages19
ISBN (Print)9783031918377
DOIs
Publication statusPublished - 2025
EventWorkshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science
Volume15631 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceWorkshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Keywords

  • HDR video reconstruction
  • Latent diffusion model

Fingerprint

Dive into the research topics of 'Diffusion-Promoted HDR Video Reconstruction'. Together they form a unique fingerprint.

Cite this