TY - JOUR
T1 - Designing antiperovskite derivatives via atomic-position splitting for photovoltaic applications
AU - Tang, Gang
AU - Liu, Xiaohan
AU - Wang, Shihao
AU - Hu, Tao
AU - Feng, Chunbao
AU - Zhu, Cheng
AU - Zhu, Bonan
AU - Hong, Jiawang
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/8/6
Y1 - 2024/8/6
N2 - Due to the success of halide perovskites in the photovoltaic field, halide perovskite-derived semiconductors have also been widely studied for optoelectronic applications. However, the photovoltaic performance of these perovskite derivatives still lags significantly behind their perovskite counterparts, mainly due to deficiencies at the B-site or X-site of the derivatives, which disrupt the connectivity of the key [BX6] octahedra units. Herein, we developed a class of antiperovskite-derived materials with the formula , achieved by splitting the A anion, originally at the corner site of the cubic antiperovskite structure, into three edge-centered sites. This structural transformation maintains the three-dimensional octahedral framework. The thermodynamic stability, dynamical stability, and band gaps of 80 compounds were calculated using first-principles calculations. Based on criteria including stability and electronic properties, we identified 9 promising antiperovskite derivatives for further evaluation of their photovoltaic performance. Notably, the calculated theoretical maximum efficiencies of Ba3BiI3, Ba3SbI3, and Ba3BiBr3 all exceed 24.5%, which is comparable to that of CH3NH3PbI3 solar cells. Interpretable machine learning analysis was further carried out to identify critical physical descriptors influencing thermodynamic stability and band gap. Our work provides a novel approach for designing high performance perovskite-type structure-inspired semiconductors with potential for optoelectronic applications.
AB - Due to the success of halide perovskites in the photovoltaic field, halide perovskite-derived semiconductors have also been widely studied for optoelectronic applications. However, the photovoltaic performance of these perovskite derivatives still lags significantly behind their perovskite counterparts, mainly due to deficiencies at the B-site or X-site of the derivatives, which disrupt the connectivity of the key [BX6] octahedra units. Herein, we developed a class of antiperovskite-derived materials with the formula , achieved by splitting the A anion, originally at the corner site of the cubic antiperovskite structure, into three edge-centered sites. This structural transformation maintains the three-dimensional octahedral framework. The thermodynamic stability, dynamical stability, and band gaps of 80 compounds were calculated using first-principles calculations. Based on criteria including stability and electronic properties, we identified 9 promising antiperovskite derivatives for further evaluation of their photovoltaic performance. Notably, the calculated theoretical maximum efficiencies of Ba3BiI3, Ba3SbI3, and Ba3BiBr3 all exceed 24.5%, which is comparable to that of CH3NH3PbI3 solar cells. Interpretable machine learning analysis was further carried out to identify critical physical descriptors influencing thermodynamic stability and band gap. Our work provides a novel approach for designing high performance perovskite-type structure-inspired semiconductors with potential for optoelectronic applications.
UR - https://www.scopus.com/pages/publications/85201259485
U2 - 10.1039/d4mh00526k
DO - 10.1039/d4mh00526k
M3 - Article
C2 - 39139143
AN - SCOPUS:85201259485
SN - 2051-6347
VL - 11
SP - 5320
EP - 5330
JO - Materials Horizons
JF - Materials Horizons
IS - 21
ER -