Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism

Yang Yi, Zhou Geng, Jianqing Zhang, Siyuan Cheng, Mengyin Fu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Citations (Scopus)

Abstract

This paper describes a novel amphibious robot, which adopts a dual-swing-legs propulsion mechanism, proposing a new locomotion mode. The robot is called FroBot, since its structure and locomotion are similar to frogs. Our inspiration comes from the frog scooter and breaststroke. Based on its swing leg mechanism, an unusual universal wheel structure is used to generate propulsion on land, while a pair of flexible caudal fins functions like the foot flippers of a frog to generate similar propulsion underwater. On the basis of the prototype design and the dynamic model of the robot, some locomotion control simulations and experiments were conducted for the purpose of adjusting the parameters that affect the propulsion of the robot. Finally, a series of underwater experiments were performed to verify the design feasibility of FroBot and the rationality of the control algorithm.

Original languageEnglish
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages559-566
Number of pages8
ISBN (Electronic)9781479999941
DOIs
Publication statusPublished - 11 Dec 2015
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: 28 Sept 20152 Oct 2015

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

ConferenceIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
Country/TerritoryGermany
CityHamburg
Period28/09/152/10/15

Fingerprint

Dive into the research topics of 'Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism'. Together they form a unique fingerprint.

Cite this