Abstract
A two-dimensional beam steering device is an essential optical element for many applications, such as free-space optical communications, light detection and ranging, and microscopy. The purpose of the paper is to develop a two-dimensional beam steering device with a simple structure and a large beam steering angle. The principle of beam steering is based on the decentred lens. The decentred lens is placed on the center of the dielectric elastomer and the movement of the decentred lens is actuated by the dielectric elastomer The dielectric elastomer is divided into four quadrants and the top and bottom surfaces of the four quadrants of dielectric elastomer are coated by compliant electrodes. Through applying different voltages on the four quadrants, the decentred lens can move and the beam is steered in a two-dimensional direction. We develop a prototype and carried out imaging experiments to verify the proposed beam steering method. The experimental results show that the maximum translation distance of the decentred lens is 1.496 mm at an actuation voltage of 5 kV. The function of two-dimensional beam steering is realized and the maximum beam steering angle of the device is 11.98°. Such a two-dimensional beam steering device promises a potential solution in various beam steering systems.
Original language | English |
---|---|
Article number | 127557 |
Journal | Optics Communications |
Volume | 506 |
DOIs | |
Publication status | Published - 1 Mar 2022 |
Keywords
- Beam steering
- Decentred lens
- Dielectric elastomer
- Four quadrants
- Two-dimensional