Design and Performance Studies on Series of Tetrazole-Based Ultra-High-Energy Density High-Nitrogen Heterocyclic Power Systems

Yunqiu Li, Qiyao Yu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The innovation of energy storage technology and its solutions for energetic materials is an important direction in the current energy technology field. Hence, series of tetrazole-based ultra-high-energy-density high-nitrogen heterocyclic power compounds were designed and their energy characteristics and safety performances were evaluated by density functional theory (DFT). The results indicate that the type, number, and position of substituents have a significant effect on the comprehensive performance of these compounds. Research on electronic features shows that mono-substituents on the N atom connecting two tetrazole rings, substituents with more H atoms on the tetrazole ring, and less energetic substituents are beneficial for the stability of compounds. The discussion on energy characteristics and safety performance indicates that compounds B1(N-(1-nitro-1H-tetrazol-5-yl)-N-(1H-tetrazol-5-yl)nitramide), B7(N’-(1-nitro-1H-tetrazol-5-yl)-N’-(1H-tetrazol-5-yl)nitric hydrazide), B8(N-(1-(nitroamino)-1H-tetrazol-5-yl)-N-(1H-tetrazol-5-yl)nitramide), C1(5,5′-(hydrazine-1,1-diyl)bis(1-nitro-1H-tetrazole)), C4(N,N-bis(1-nitro-1H-tetrazol-5-yl)nitramide), and C6(N-(1-amino-1H-tetrazol-5-yl)-N-(1-nitro-1H-tetrazol-5-yl)nitramide) possess outstanding comprehensive performance concerning density, heat of formation, detonation heat, detonation velocity and pressure, oxygen balance, and impact sensitivity, and can be screened as candidates for high-energy-density compounds. The results are expected to provide new solutions for the innovation and progress of energy storage technologies in the energetic materials field.

Original languageEnglish
Article number1609
JournalEnergies
Volume18
Issue number7
DOIs
Publication statusPublished - Apr 2025

Keywords

  • energy characteristics
  • high-energy-density compounds
  • molecular design
  • safety performance

Fingerprint

Dive into the research topics of 'Design and Performance Studies on Series of Tetrazole-Based Ultra-High-Energy Density High-Nitrogen Heterocyclic Power Systems'. Together they form a unique fingerprint.

Cite this