Dense Incremental Extreme Learning Machine with Accelerating Amount and Proportional Integral Differential

Weidong Zou, Yuanqing Xia, Meikang Qiu, Weipeng Cao*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Incremental Extreme Learning Machine (I-ELM) has been widely concerned in recent years because of its ability to automatically find the best number of hidden layer nodes and non-iterative training mechanism. However, in big data scenarios, I-ELM and its variants face great challenges because the least squares method is used to calculate their output weights in the training process, which is time-consuming and unstable. To alleviate this problem, we propose a novel Dense I-ELM based on the Accelerating Amount and the Proportional Integral Differential techniques (AA-PID-DELM) in this paper. For AA-PID-DELM, the dense connection architecture can exert the maximum utility of each hidden layer node, and the accelerating amount and PID techniques can make the model achieve better generalization ability and stability in big data scenarios. Extensive experimental results on the approximation of 2D nonlinear function and several UCI data-sets have proved the effectiveness of AA-PID-DELM.

Original languageEnglish
Title of host publicationKnowledge Science, Engineering and Management - 14th International Conference, KSEM 2021, Proceedings
EditorsHan Qiu, Cheng Zhang, Zongming Fei, Meikang Qiu, Sun-Yuan Kung
PublisherSpringer Science and Business Media Deutschland GmbH
Pages89-100
Number of pages12
ISBN (Print)9783030821357
DOIs
Publication statusPublished - 2021
Event14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021 - Tokyo, Japan
Duration: 14 Aug 202116 Aug 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12815 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021
Country/TerritoryJapan
CityTokyo
Period14/08/2116/08/21

Keywords

  • Accelerating amount
  • Incremental extreme learning machine
  • Neural network architecture
  • Proportional integral derivative

Fingerprint

Dive into the research topics of 'Dense Incremental Extreme Learning Machine with Accelerating Amount and Proportional Integral Differential'. Together they form a unique fingerprint.

Cite this