Deep Wasserstein Graph Discriminant Learning for Graph Classification

Tong Zhang, Yun Wang, Zhen Cui*, Chuanwei Zhou, Baoliang Cui, Haikuan Huang, Jian Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Citations (Scopus)

Abstract

Graph topological structures are crucial to distinguish different-class graphs. In this work, we propose a deep Wasserstein graph discriminant learning (WGDL) framework to learn discriminative embeddings of graphs in Wasserstein-metric (W-metric) matching space. In order to bypass the calculation of W-metric class centers in discriminant analysis, as well as better support batch process learning, we introduce a reference set of graphs (aka graph dictionary) to express those representative graph samples (aka dictionary keys). On the bridge of graph dictionary, every input graph can be projected into the latent dictionary space through our proposed Wasserstein graph transformation (WGT). In WGT, we formulate inter-graph distance in W-metric space by virtue of the optimal transport (OT) principle, which effectively expresses the correlations of cross-graph structures. To make WGDL better representation ability, we dynamically update graph dictionary during training by maximizing the Wasserstein Discriminant loss, i.e. the ratio of inter-class versus intra-class Wasserstein distance. To evaluate our WGDL method, comprehensive experiments are conducted on six graph classification datasets. Experimental results demonstrate the effectiveness of our WGDL, and state-of-the-art performance.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages10914-10922
Number of pages9
ISBN (Electronic)9781713835974
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume12B

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'Deep Wasserstein Graph Discriminant Learning for Graph Classification'. Together they form a unique fingerprint.

Cite this