Decision fusion for dual-window-based hyperspectral anomaly detector

Wei Li*, Qian Du

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

In hyperspectral anomaly detection, the dual-window-based detector is a widely used technique that employs two windows to capture nonstationary statistics of anomalies and background. However, its detection performance is usually sensitive to the choice of window sizes and suffers from inappropriate window settings. In this work, a decision-fusion approach is proposed to alleviate such sensitivity by merging the results from multiple detectors with different window sizes. The proposed approach is compared with the classic Reed-Xiaoli (RX) algorithm as well as kernel RX (KRX) using two real hyperspectral data. Experimental results demonstrate that it outperforms the existing detectors, such as RX, KRX, and multiple-window-based RX. The overall detection framework is suitable for parallel computing, which can greatly reduce computational time when processing large-scale remote sensing image data.

Original languageEnglish
Article number097297
JournalJournal of Applied Remote Sensing
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Jan 2015
Externally publishedYes

Keywords

  • RX detector
  • anomaly detection
  • decision fusion
  • hyperspectral imagery

Fingerprint

Dive into the research topics of 'Decision fusion for dual-window-based hyperspectral anomaly detector'. Together they form a unique fingerprint.

Cite this