DCAN: Deep Co-Attention Network by Modeling User Preference and News Lifecycle for News Recommendation

Lingkang Meng, Chongyang Shi*, Shufeng Hao, Xiangrui Su

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Personalized news recommendation systems aim to alleviate information overload and provide users with personalized reading suggestions. In general, each news has its own lifecycle that is depicted by a bell-shaped curve of clicks, which is highly likely to influence users’ choices. However, existing methods typically depend on capturing user preference to make recommendations while ignoring the importance of news lifecycle. To fill this gap, we propose a Deep Co-Attention Network DCAN by modeling user preference and news lifecycle for news recommendation. The core of DCAN is a Co-Attention Net that fuses the user preference attention and news lifecycle attention together to model the dual influence of users’ clicked news. In addition, in order to learn the comprehensive news representation, a Multi-Path CNN is proposed to extract multiple patterns from the news title, content and entities. Moreover, to better capture user preference and model news lifecycle, we present a User Preference LSTM and a News Lifecycle LSTM to extract sequential correlations from news representations and additional features. Extensive experimental results on two real-world news datasets demonstrate the significant superiority of our method and validate the effectiveness of our Co-Attention Net by means of visualization.

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications - 26th International Conference, DASFAA 2021, Proceedings
EditorsChristian S. Jensen, Ee-Peng Lim, De-Nian Yang, Wang-Chien Lee, Vincent S. Tseng, Vana Kalogeraki, Jen-Wei Huang, Chih-Ya Shen
PublisherSpringer Science and Business Media Deutschland GmbH
Pages100-114
Number of pages15
ISBN (Print)9783030731991
DOIs
Publication statusPublished - 2021
Event26th International Conference on Database Systems for Advanced Applications, DASFAA 2021 - Taipei, Taiwan, Province of China
Duration: 11 Apr 202114 Apr 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12683 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Database Systems for Advanced Applications, DASFAA 2021
Country/TerritoryTaiwan, Province of China
CityTaipei
Period11/04/2114/04/21

Keywords

  • Co-attention neural network
  • Convolutional neural network
  • News recommendation
  • Recurrent neural network

Fingerprint

Dive into the research topics of 'DCAN: Deep Co-Attention Network by Modeling User Preference and News Lifecycle for News Recommendation'. Together they form a unique fingerprint.

Cite this