Cycle life prediction of lithium ion battery based on DE-BP neural network

Zhao Yao, Shun Lu*, Yingshun Li, Xiaojian Yi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Aiming at the low prediction accuracy of current lithium-ion battery cycle, this paper proposes a model based on differential evolution algorithm (DE) and BP neural network fusion. BP neural network is used to predict the cycle life of lithium-ion battery. The DE algorithm is used to optimize the initial weight and threshold of BP neural network, which reduces the number of iterations of neural network and accelerates the convergence speed. The prediction results show that the prediction model has higher prediction accuracy, effectively improves the convergence speed of BP neural network, and meets the characteristics of battery operation, which is of great significance for improving the timeliness and accuracy of battery life assessment.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
EditorsChuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages137-141
Number of pages5
ISBN (Electronic)9781728101996
DOIs
Publication statusPublished - Aug 2019
Event2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, China
Duration: 15 Aug 201917 Aug 2019

Publication series

NameProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

Conference

Conference2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
Country/TerritoryChina
CityBeijing
Period15/08/1917/08/19

Keywords

  • BP neural network
  • Cycle life prediction
  • Differential evolution
  • Lithium-ion battery

Fingerprint

Dive into the research topics of 'Cycle life prediction of lithium ion battery based on DE-BP neural network'. Together they form a unique fingerprint.

Cite this