Curvature Generation in Curved Spaces for Few-Shot Learning

Zhi Gao, Yuwei Wu*, Yunde Jia, Mehrtash Harandi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

46 Citations (Scopus)

Abstract

Few-shot learning describes the challenging problem of recognizing samples from unseen classes given very few labeled examples. In many cases, few-shot learning is cast as learning an embedding space that assigns test samples to their corresponding class prototypes. Previous methods assume that data of all few-shot learning tasks comply with a fixed geometrical structure, mostly a Euclidean structure. Questioning this assumption that is clearly difficult to hold in real-world scenarios and incurs distortions to data, we propose to learn a task-aware curved embedding space by making use of the hyperbolic geometry. As a result, task-specific embedding spaces where suitable curvatures are generated to match the characteristics of data are constructed, leading to more generic embedding spaces. We then leverage on intra-class and inter-class context information in the embedding space to generate class prototypes for discriminative classification. We conduct a comprehensive set of experiments on inductive and transductive few-shot learning, demonstrating the benefits of our proposed method over existing embedding methods.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8671-8680
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Curvature Generation in Curved Spaces for Few-Shot Learning'. Together they form a unique fingerprint.

Cite this