TY - JOUR
T1 - Crystal bases and simple modules for hecke algebras of type g(p, p, n)
AU - Jun, Hu
PY - 2007/3/16
Y1 - 2007/3/16
N2 - We apply the crystal basis theory for Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type G(p, p, n). This yields a classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003), 7-20]. The separated case was completed in [J. Hu, J. Algebra 274 (2004), 446-490]. Furthermore, we use Naito and Sagaki’s work [S. Naito & D. Sagaki, J. Algebra 251, (2002) 461-474] on Lakshmibai-Seshadri paths fixed by diagram automorphisms to derive explicit formulas for the number of simple modules over these Hecke algebras. These formulas generalize earlier results of [M. Geck, Represent. Theory 4 (2000) 370-397] on the Hecke algebras of type Dn(i.e., of type G(2, 2, n)).
AB - We apply the crystal basis theory for Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type G(p, p, n). This yields a classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003), 7-20]. The separated case was completed in [J. Hu, J. Algebra 274 (2004), 446-490]. Furthermore, we use Naito and Sagaki’s work [S. Naito & D. Sagaki, J. Algebra 251, (2002) 461-474] on Lakshmibai-Seshadri paths fixed by diagram automorphisms to derive explicit formulas for the number of simple modules over these Hecke algebras. These formulas generalize earlier results of [M. Geck, Represent. Theory 4 (2000) 370-397] on the Hecke algebras of type Dn(i.e., of type G(2, 2, n)).
UR - http://www.scopus.com/inward/record.url?scp=85009782196&partnerID=8YFLogxK
U2 - 10.1090/S1088-4165-07-00313-5
DO - 10.1090/S1088-4165-07-00313-5
M3 - Article
AN - SCOPUS:54149094486
SN - 1088-4165
VL - 11
SP - 16
EP - 44
JO - Representation Theory
JF - Representation Theory
IS - 2
ER -