Coupled Graph Convolutional Neural Networks for Text-Oriented Clinical Diagnosis Inference

Ning Liu, Wei Zhang, Xiuxing Li, Haitao Yuan, Jianyong Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Text-oriented clinical diagnosis inference is to predict a set of diagnoses for a specific patient given its medical notes. Due to the great potential of automatic diagnosis inference, machine learning methods have began to be applied to this domain. However, existing approaches focus on performing either labor-intensive feature engineering or sequential modeling of each medical note separately, without considering the information sharing among similar patients, which is essential for evidence-based medicine, an emerging new diagnosis process. Motivated by this issue and the recently proposed graph convolutional network (GCN) for text classification, we propose to apply GCN for the text-oriented clinical diagnosis inference task. To encode the comorbidity of diagnoses into the GCN model and allow information sharing between patients, we devise a coupled graph convolutional neural networks (CGCN), where a note-dependent graph and a label-dependent graph are learned collaboratively with hyperplane projection to ensure they are in the same semantic space. The comprehensive results on two real datasets show that our method outperforms the state-of-art methods in text-oriented diagnosis inference.

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications - 25th International Conference, DASFAA 2020, Proceedings
EditorsYunmook Nah, Bin Cui, Sang-Won Lee, Jeffrey Xu Yu, Yang-Sae Moon, Steven Euijong Whang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages369-385
Number of pages17
ISBN (Print)9783030594091
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event25th International Conference on Database Systems for Advanced Applications, DASFAA 2020 - Jeju, Korea, Republic of
Duration: 24 Sept 202027 Sept 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12112 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Database Systems for Advanced Applications, DASFAA 2020
Country/TerritoryKorea, Republic of
CityJeju
Period24/09/2027/09/20

Keywords

  • Diagnosis inference
  • Graph neural network
  • Medical data mining

Fingerprint

Dive into the research topics of 'Coupled Graph Convolutional Neural Networks for Text-Oriented Clinical Diagnosis Inference'. Together they form a unique fingerprint.

Cite this