Cost-efficient breakthrough: Fabricating multifunctional woven hydrogels from water-soluble polyvinyl alcohol yarn

Chenxing Xiang, Yuanhao Tian, Huiming Ning*, Ning Hu, Lidan Zhang, Feng Liu, Rui Zou, Shu Wang, Jie Wen, Leilei Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Hydrogel fabrics have attracted much attention for applications in various fields such as wound dressings, soft robotics and smart wearable devices. However, achieving hydrogel fabrics with desirable mechanical properties, environmental stability, breathability, and cost-effectiveness remains challenging. Here, we propose a novel and cost-effective physical cross-linking method for the preparation of multifunctional woven hydrogels using water-soluble polyvinyl alcohol (PVA) yarns. The efficiency of our method outperforms the conventional physical cross-linking method by more than tenfold. The resulting hydrogel fabrics exhibit superior mechanical properties, with high tensile strength (16.7 ± 1.6 MPa), remarkable elongation (1778 ± 46 %), and impressive toughness (56.53 ± 3.23 MJ/m3). The toughening mechanism was also analyzed by molecular dynamics simulations. Furthermore, these hydrogels exhibit a commendable air permeability (134.76 ± 3.65 mm/s) and sustained electrical conductivity. Our approach is highly applicable and even allows the creation of three-dimensional (3D) hydrogel structures using 3D printing techniques. These hydrogels can be used as sensors for real-time monitoring of human physical activity and for the detection of different roughness. Furthermore, these hydrogels can be integrated into computer systems as touch screens to control simulated aircraft movements in interactive games. The hydrogels also exhibit excellent water retention and low temperature resistance. Our cost-effective process is scalable for commercial production, opening opportunities for widespread hydrogel applications.

Original languageEnglish
Article number157292
JournalChemical Engineering Journal
Volume500
DOIs
Publication statusPublished - 15 Nov 2024
Externally publishedYes

Keywords

  • Environmental stability
  • Mechanical properties
  • Smart wearable devices
  • Tactile sensing
  • Woven hydrogel

Fingerprint

Dive into the research topics of 'Cost-efficient breakthrough: Fabricating multifunctional woven hydrogels from water-soluble polyvinyl alcohol yarn'. Together they form a unique fingerprint.

Cite this