TY - JOUR
T1 - Controllable Large-Area Fabrication of Illumination Angle-Sensitive Metasurfaces Using Femtosecond Laser
AU - Yuan, Yanping
AU - Wang, Wenbo
AU - Li, Dongfang
AU - Zhao, Tianyu
AU - Han, Weina
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
PY - 2025
Y1 - 2025
N2 - Plasmonic nanostructures have shown significant potential for manipulating electromagnetic waves at the subwavelength scale. Plasmonic nanostructures exhibit optical bending, absorption, and scattering properties, as well as strong plasmonic resonance. However, the current fabrication methods heavily rely on photolithography or templates, which pose limitations in terms of cost, efficiency, complexity, and scalability. In this study, a novel method is proposed for the controllable fabrication of ordered metal–insulator-metal (MIM) gold nanobump arrays by femtosecond laser direct writing. The fine regulation and control of the shape and size of the gold nanostructure can be realized by changing laser pulse energy, which leads to the change of the resonance light scattering and the plasmon structure color of individual structure. Large-scale periodic gold nanostructure with illumination angle sensitive characteristic can be achieved by adopting the combination mode of high-power, high-attenuation, frequency-doubled laser, and a telephoto objective lens. This may have great application potential in the aspects of high-resolution imaging, information storage, nanodevices, optical metasurfaces, and biosensors.
AB - Plasmonic nanostructures have shown significant potential for manipulating electromagnetic waves at the subwavelength scale. Plasmonic nanostructures exhibit optical bending, absorption, and scattering properties, as well as strong plasmonic resonance. However, the current fabrication methods heavily rely on photolithography or templates, which pose limitations in terms of cost, efficiency, complexity, and scalability. In this study, a novel method is proposed for the controllable fabrication of ordered metal–insulator-metal (MIM) gold nanobump arrays by femtosecond laser direct writing. The fine regulation and control of the shape and size of the gold nanostructure can be realized by changing laser pulse energy, which leads to the change of the resonance light scattering and the plasmon structure color of individual structure. Large-scale periodic gold nanostructure with illumination angle sensitive characteristic can be achieved by adopting the combination mode of high-power, high-attenuation, frequency-doubled laser, and a telephoto objective lens. This may have great application potential in the aspects of high-resolution imaging, information storage, nanodevices, optical metasurfaces, and biosensors.
KW - Femtosecond laser
KW - Gold nanostructures
KW - Illumination angle sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85217265333&partnerID=8YFLogxK
U2 - 10.1007/s11468-024-02636-3
DO - 10.1007/s11468-024-02636-3
M3 - Article
AN - SCOPUS:85217265333
SN - 1557-1955
JO - Plasmonics
JF - Plasmonics
ER -