TY - JOUR
T1 - Computational analysis of piston shape effects on in-cylinder gas flow, fuel-charge mixing, and combustion characteristics in a two-stroke rod-less spark ignition opposed-pistons engine
AU - Zhu, Zhaojun
AU - Yang, Ziming
AU - Li, Yikai
AU - Sun, Chenghan
N1 - Publisher Copyright:
© IMechE 2024.
PY - 2024
Y1 - 2024
N2 - Compared with the traditional in-cylinder direct-injection spark ignition engine, the side-injection and side-spark-ignition characteristics of the two-stroke opposed-piston engine increase the ignition kernel offset and flame propagation distance. Increasing the flame propagation speed can to some extent solve the drawbacks caused by the non-central arrangement of spark plugs. The combustion chamber structure plays a crucial role in gas flow, fuel-charge mixing, and combustion characteristics. Therefore, three pistons were designed and comparatively analyzed in this study. The results show that: The pancake piston is beneficial to maintaining the intake swirl strength due to its simple and smooth spherical arc structure. The swirl strength of the pit and pit-guided piston decreases obviously, and the tumble strength can be maintained well. Compared to pancake and pit-guided pistons, the average TKE for the pit piston increased by approximately 25%, with a more concentrated distribution at the spark timing. The pancake piston exhibits the best scavenging performance, reducing the residual exhaust gas ratio by 2.1% and fresh air loss by 3.3% to the pit piston. A stable ignition core can be formed at the spark timing, but significant differences are observed in the flame propagation process for three pistons. Compared to the pit-guided piston, the pit piston has a 0.3% decrease in the indicated thermal efficiency, but a 13.1% decrease in combustion duration, which reduces knock tendency.
AB - Compared with the traditional in-cylinder direct-injection spark ignition engine, the side-injection and side-spark-ignition characteristics of the two-stroke opposed-piston engine increase the ignition kernel offset and flame propagation distance. Increasing the flame propagation speed can to some extent solve the drawbacks caused by the non-central arrangement of spark plugs. The combustion chamber structure plays a crucial role in gas flow, fuel-charge mixing, and combustion characteristics. Therefore, three pistons were designed and comparatively analyzed in this study. The results show that: The pancake piston is beneficial to maintaining the intake swirl strength due to its simple and smooth spherical arc structure. The swirl strength of the pit and pit-guided piston decreases obviously, and the tumble strength can be maintained well. Compared to pancake and pit-guided pistons, the average TKE for the pit piston increased by approximately 25%, with a more concentrated distribution at the spark timing. The pancake piston exhibits the best scavenging performance, reducing the residual exhaust gas ratio by 2.1% and fresh air loss by 3.3% to the pit piston. A stable ignition core can be formed at the spark timing, but significant differences are observed in the flame propagation process for three pistons. Compared to the pit-guided piston, the pit piston has a 0.3% decrease in the indicated thermal efficiency, but a 13.1% decrease in combustion duration, which reduces knock tendency.
KW - gas flow
KW - mixture formation
KW - opposed-piston engine
KW - Piston design
KW - spark ignition
KW - unmanned aerial vehicles
UR - http://www.scopus.com/inward/record.url?scp=85199976882&partnerID=8YFLogxK
U2 - 10.1177/09544070241264087
DO - 10.1177/09544070241264087
M3 - Article
AN - SCOPUS:85199976882
SN - 0954-4070
JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
ER -