Combating Semantic Contamination in Learning with Label Noise

Wenxiao Fan, Kan Li*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.

Original languageEnglish
Pages (from-to)2870-2878
Number of pages9
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume39
Issue number3
DOIs
Publication statusPublished - 11 Apr 2025
Externally publishedYes
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025

Fingerprint

Dive into the research topics of 'Combating Semantic Contamination in Learning with Label Noise'. Together they form a unique fingerprint.

Cite this