Abstract
The modern smart grid is a vital component of national development and is a complex coupled network composed of power and communication networks. The faults or attacks of either network may cause the performance of a power grid to decline or result in a large-scale power outage, leading to significant economic losses. To assess the impact of grid faults or attacks, hardware-in-the-loop (HIL) simulation tools that integrate real grid networks and software virtual networks (SVNs) are used. However, scheduling faults and modifying model parameters using most existing simulators can be challenging, and traditional HIL interfaces only support a single device. To address these limitations, we designed and implemented a grid co-simulation platform that could dynamically simulate grid faults and evaluate grid sub-nets. This platform used RTDS and EXata as power and communication simulators, respectively, integrated using a protocol conversion module to synchronize and convert protocol formats. Additionally, the platform had a programmable fault configuration interface (PFCI) to modify model parameters and a real sub-net access interface (RSAI) to access physical grid devices or sub-nets in the SVN, improving simulation accuracy. We also conducted several tests to demonstrate the effectiveness of the proposed platform.
Original language | English |
---|---|
Article number | 3710 |
Journal | Electronics (Switzerland) |
Volume | 12 |
Issue number | 17 |
DOIs | |
Publication status | Published - Sept 2023 |
Keywords
- HIL
- PFCI
- RSAI
- co-simulation
- smart grid