Abstract
The wet H2-rich gas was used as reducing gas instead of the H2/N2 gas in the reduction step of the catalyst preparation. It is found that the selectivity for CO methanation over the catalysts 0.4Ni/ZrO2 so-obtained was decreased in comparison to the case of the H2/N2 gas used as reducing gas. Even though, the samples with the different feed atomic ratios of Ni/Zr prepared by the impregnation method and the co-precipitation method, respectively, were evaluated with the wet H2-rich gas both as reducing gas and as reactant gas. The catalysts Ni/ZrO2-CP prepared by the co-precipitation method exhibited a high catalytic activity for CO removal at a lowered reaction temperature with increasing the Ni loading. Over the catalyst 3.0Ni/ZrO2-CP, CO in the reactant gas could be removed to below 10 ppm at reaction temperatures of 220–260 °C with the selectivity higher than 50%. And the selectivity was kept at 100% during the 100 h test at 220 °C. The catalysts were characterized by XRD, XPS, XRF and the adsorption isotherm measurement. In addition, effect of water vapor in reactant gas was studied over the catalysts 0.4Ni/ZrO2 with the wet H2-rich gas and the dry H2-rich gas as reactant gas, respectively, in the case of the H2/N2 gas fixed as reducing gas. It is seen that presence of water vapor in the reactant gas retarded methanation reactions of CO and CO2 on the catalysts.
Original language | English |
---|---|
Pages (from-to) | 15985-15994 |
Number of pages | 10 |
Journal | International Journal of Hydrogen Energy |
Volume | 43 |
Issue number | 33 |
DOIs | |
Publication status | Published - 16 Aug 2018 |
Keywords
- Co-precipitation
- Methanation
- Reduction
- Water vapor
- Zirconia