Clustering by Detecting Density Peaks and Assigning Points by Similarity-First Search Based on Weighted K-Nearest Neighbors Graph

Qi Diao, Yaping Dai, Qichao An, Weixing Li, Xiaoxue Feng, Feng Pan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

This paper presents an improved clustering algorithm for categorizing data with arbitrary shapes. Most of the conventional clustering approaches work only with round-shaped clusters. This task can be accomplished by quickly searching and finding clustering methods for density peaks (DPC), but in some cases, it is limited by density peaks and allocation strategy. To overcome these limitations, two improvements are proposed in this paper. To describe the clustering center more comprehensively, the definitions of local density and relative distance are fused with multiple distances, including K-nearest neighbors (KNN) and shared-nearest neighbors (SNN). A similarity-first search algorithm is designed to search the most matching cluster centers for noncenter points in a weighted KNN graph. Extensive comparison with several existing DPC methods, e.g., traditional DPC algorithm, density-based spatial clustering of applications with noise (DBSCAN), affinity propagation (AP), FKNN-DPC, and K-means methods, has been carried out. Experiments based on synthetic data and real data show that the proposed clustering algorithm can outperform DPC, DBSCAN, AP, and K-means in terms of the clustering accuracy (ACC), the adjusted mutual information (AMI), and the adjusted Rand index (ARI).

Original languageEnglish
Article number1731075
JournalComplexity
Volume2020
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Clustering by Detecting Density Peaks and Assigning Points by Similarity-First Search Based on Weighted K-Nearest Neighbors Graph'. Together they form a unique fingerprint.

Cite this