Classifier Clustering and Feature Alignment for Federated Learning under Distributed Concept Drift

Junbao Chen, Jingfeng Xue, Yong Wang, Zhenyan Liu*, Lu Huang

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Data heterogeneity is one of the key challenges in federated learning, and many efforts have been devoted to tackling this problem. However, distributed concept drift with data heterogeneity, where clients may additionally experience different concept drifts, is a largely unexplored area. In this work, we focus on real drift, where the conditional distribution P(Y|X) changes. We first study how distributed concept drift affects the model training and find that local classifier plays a critical role in drift adaptation. Moreover, to address data heterogeneity, we study the feature alignment under distributed concept drift, and find two factors that are crucial for feature alignment: the conditional distribution P(Y|X) and the degree of data heterogeneity. Motivated by the above findings, we propose FedCCFA, a federated learning framework with classifier clustering and feature alignment. To enhance collaboration under distributed concept drift, FedCCFA clusters local classifiers at class-level and generates clustered feature anchors according to the clustering results. Assisted by these anchors, FedCCFA adaptively aligns clients' feature spaces based on the entropy of label distribution P(Y), alleviating the inconsistency in feature space. Our results demonstrate that FedCCFA significantly outperforms existing methods under various concept drift settings. Code is available at https://github.com/Chen-Junbao/FedCCFA.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
Publication statusPublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Fingerprint

Dive into the research topics of 'Classifier Clustering and Feature Alignment for Federated Learning under Distributed Concept Drift'. Together they form a unique fingerprint.

Cite this