Chirp parameter estimation from tensor decomposition

Mingyuan Ge, Guohua Wei, Xinpeng Zhou

Research output: Contribution to conferencePaperpeer-review

Abstract

The non-stationary properties of chirp signals restrict the application of the parameter estimation algorithms of single-frequency signals in the scene of chirp signals, simultaneously the traditional chirp parameter estimation algorithms also have limitations, to overcome some of the limitations this paper proposes a new algorithm which can estimate chirp parameter from tensor decomposition. The new algorithm uses the received discrete data aligning according to a certain form to build multidimensional data structures and then applies the tensor decomposition in chip parameter estimation using the shift invariance of subspace, the algorithm provides a new way of thinking in the field of chirp parameter estimation and it can apply in the scene of multiple chirp signals, the simulations prove the effectiveness of the algorithm.

Original languageEnglish
Pages2057-2062
Number of pages6
DOIs
Publication statusPublished - 2014
Event2014 12th IEEE International Conference on Signal Processing, ICSP 2014 - Hangzhou, China
Duration: 19 Oct 201423 Oct 2014

Conference

Conference2014 12th IEEE International Conference on Signal Processing, ICSP 2014
Country/TerritoryChina
CityHangzhou
Period19/10/1423/10/14

Keywords

  • Chirp
  • Parameter estimation
  • Tensor decomposition

Fingerprint

Dive into the research topics of 'Chirp parameter estimation from tensor decomposition'. Together they form a unique fingerprint.

Cite this