Cat-inspired mechanical design of self-adaptive toes for a legged robot

Huaxin Liu, Qiang Huang, Weimin Zhang, Xuechao Chen, Zhangguo Yu, Libo Meng, Lei Bao, Aiguo Ming, Yan Huang, Kenji Hashimoto, Atsuo Takanishi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Cats have protractible claws to fold their tips to keep them sharp. They protract claws while hunting and pawing on slippery surfaces. Protracted claws by tendons and muscles of toes can help cats anchoring themselves steady while their locomotion trends to slip and releasing the hold while they retract claws intentionally. This research proposes a kind of modularized self-adaptive toe mechanism inspired by cat claws to improve the extremities' contact performance for legged robot. The mechanism is constructed with four-bar linkage actuated by contact reaction force and retracted by applied spring tension. A feasible mechanical design based on several essential parameters is introduced and an integrated Sole-Toe prototype is built for experimental evaluation. Mechanical self-adaption and actual contact performance on specific surface have been evaluated respectively on a biped walking platform and a bench-top mechanical testing.

Original languageEnglish
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2425-2430
Number of pages6
ISBN (Electronic)9781509037629
DOIs
Publication statusPublished - 28 Nov 2016
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: 9 Oct 201614 Oct 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period9/10/1614/10/16

Fingerprint

Dive into the research topics of 'Cat-inspired mechanical design of self-adaptive toes for a legged robot'. Together they form a unique fingerprint.

Cite this