Abstract
A myriad of existing and emerging applications could benefit from coherent and broadband mid-infrared (MIR) light. Yet, existing tabletop sources are often complex or sensitive to interferometric optical misalignment. Here we demonstrate a significantly simplified scheme of broadband MIR generation by cascading the intra-pulse difference-frequency generation process in a specific nonlinear crystal. This allows pulses generated directly from mode-locked lasers to be used without further nonlinear temporal compression. The system, together with the driving beam, can provide an ultra-broadband coherent radiation coverage ranging from 2 to 17 μm with femtosecond pulse durations. To the best of our knowledge, this is the first demonstration of cascaded DFG in the MIR range, which brings emerging time-domain spectroscopic techniques closer to real-world applications.
| Original language | English |
|---|---|
| Pages (from-to) | 2566-2569 |
| Number of pages | 4 |
| Journal | Optics Letters |
| Volume | 44 |
| Issue number | 10 |
| DOIs | |
| Publication status | Published - 15 May 2019 |