BRIDGING THE GAP: A SELF-LEARNING MODEL USING IMPLICIT KNOWLEDGE FOR CHINESE SPELLING CORRECTION

Wenyao Cui, Jiahao Cai, Baohua Zhang, Yongyi Huang, Huaping Zhang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Chinese Spelling Correction (CSC) is a challenging and essential task in natural language processing. In this study, we introduces a new method for Chinese Spelling Correction (CSC) that addresses three unattended areas in prior studies. Firstly, we use an Implicit Knowledge Extraction Network to overcome limitations of conventional methods that rely on explicit knowledge alone. Secondly, we use KL divergence to limit the effect of incorrect characters on semantic understanding, ensuring consistent meaning. Finally, we employ a Cor-Det framework rather than the traditional Det-Cor framework, offering more consistent learning objectives. Tests on three SIGHAN benchmarks show this method significantly surpassing baseline models, highlighting the crucial role of implicit knowledge in Chinese Spelling Correction tasks.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12286-12290
Number of pages5
ISBN (Electronic)9798350344851
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: 14 Apr 202419 Apr 2024

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Country/TerritoryKorea, Republic of
CitySeoul
Period14/04/2419/04/24

Keywords

  • Chinese Spelling Correction
  • implicit knowledge

Cite this