Attentive Dual Embedding for Understanding Medical Concepts in Electronic Health Records

Xueping Peng, Guodong Long, Shirui Pan, Jing Jiang, Zhendong Niu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

Electronic health records contain a wealth of information on a patients healthcare over many visits, such as diagnoses, treatments, drugs administered, and so on. The untapped potential of these data in healthcare analytics is vast. However, given that much of medical information is a cause and effect science, new embedding methods are required to ensure the learning representations reflect the comprehensive interplays between medical concepts and their relationships over time. Unlike one-hot encoding, a distributed representation should preserve these complex interactions as high-quality inputs for machine learning-based healthcare analytics tasks. Therefore, we propose a novel attentive dual embedding method called MC2Vec. MC2Vec captures the proximity relationships between medical concepts through a two-step optimization framework that recursively refines the embedding for superior output. The framework comprises a Skip-gram model to generate the initial embedding and an attentive CBOW model to fine-tune the embedding with temporal information gleaned from sequences of patient visits. Experiments with two public datasets demonstrate that MC2Vecs produces embeddings of higher quality than five state-of-the-art methods.

Original languageEnglish
Title of host publication2019 International Joint Conference on Neural Networks, IJCNN 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728119854
DOIs
Publication statusPublished - Jul 2019
Event2019 International Joint Conference on Neural Networks, IJCNN 2019 - Budapest, Hungary
Duration: 14 Jul 201919 Jul 2019

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2019-July

Conference

Conference2019 International Joint Conference on Neural Networks, IJCNN 2019
Country/TerritoryHungary
CityBudapest
Period14/07/1919/07/19

Keywords

  • attention mechanism
  • dual embedding
  • med2Vec
  • medical concept embedding

Fingerprint

Dive into the research topics of 'Attentive Dual Embedding for Understanding Medical Concepts in Electronic Health Records'. Together they form a unique fingerprint.

Cite this