Aspect-Specific Context Modeling for Aspect-Based Sentiment Analysis

Fang Ma, Chen Zhang, Bo Zhang, Dawei Song*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Aspect-based sentiment analysis (ABSA) aims at predicting sentiment polarity (SC) or extracting opinion span (OE) expressed towards a given aspect. Previous work in ABSA mostly relies on rather complicated aspect-specific feature induction. Recently, pretrained language models (PLMs), e.g., BERT, have been used as context modeling layers to simplify the feature induction structures and achieve state-of-the-art performance. However, such PLM-based context modeling can be not that aspect-specific. Therefore, a key question is left under-explored: how the aspect-specific context can be better modeled through PLMs? To answer the question, we attempt to enhance aspect-specific context modeling with PLM in a non-intrusive manner. We propose three aspect-specific input transformations, namely aspect companion, aspect prompt, and aspect marker. Informed by these transformations, non-intrusive aspect-specific PLMs can be achieved to promote the PLM to pay more attention to the aspect-specific context in a sentence. Additionally, we craft an adversarial benchmark for ABSA (advABSA) to see how aspect-specific modeling can impact model robustness. Extensive experimental results on standard and adversarial benchmarks for SC and OE demonstrate the effectiveness and robustness of the proposed method, yielding new state-of-the-art performance on OE and competitive performance on SC.

Original languageEnglish
Title of host publicationNatural Language Processing and Chinese Computing - 11th CCF International Conference, NLPCC 2022, Proceedings
EditorsWei Lu, Shujian Huang, Yu Hong, Xiabing Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages513-526
Number of pages14
ISBN (Print)9783031171192
DOIs
Publication statusPublished - 2022
Event11th CCF International Conference on Natural Language Processing and Chinese Computing, NLPCC 2022 - Guilin, China
Duration: 24 Sept 202225 Sept 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13551 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference11th CCF International Conference on Natural Language Processing and Chinese Computing, NLPCC 2022
Country/TerritoryChina
CityGuilin
Period24/09/2225/09/22

Keywords

  • Aspect-based sentiment analysis
  • Context modeling
  • Pretrained language model

Fingerprint

Dive into the research topics of 'Aspect-Specific Context Modeling for Aspect-Based Sentiment Analysis'. Together they form a unique fingerprint.

Cite this