Artpdgan: Creating artistic pencil drawing with key map using generative adversarial networks

Su Chang Li, Kan Li*, Ilyes Kacher, Yuichiro Taira, Bungo Yanatori, Imari Sato

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

A lot of researches focus on image transfer using deep learning, especially with generative adversarial networks (GANs). However, no existing methods can produce high quality artistic pencil drawings. First, artists do not convert all the details of the photos into the drawings. Instead, artists tend to use strategies to magnify some special parts of the items and cut others down. Second, the elements in artistic drawings may not be located precisely. What’s more, the lines may not relate to the features of the items strictly. To address above challenges, we propose ArtPDGAN, a novel GAN based framework that combines an image-to-image network to generate key map. And then, we use the key map as an important part of input to generate artistic pencil drawings. The key map can show the key parts of the items to guide the generator. We use a paired and unaligned artistic drawing dataset containing high-resolution photos of items and corresponding professional artistic pencil drawings to train ArtPDGAN. Results of our experiments show that the proposed framework performs excellently against existing methods in terms of similarity to artist’s work and user evaluations.

Original languageEnglish
Title of host publicationComputational Science – ICCS 2020 - 20th International Conference, Proceedings
EditorsValeria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Peter M.A. Sloot, Peter M.A. Sloot, Peter M.A. Sloot, Jack J. Dongarra, Sérgio Brissos, João Teixeira
PublisherSpringer Science and Business Media Deutschland GmbH
Pages285-298
Number of pages14
ISBN (Print)9783030504359
DOIs
Publication statusPublished - 2020
Event20th International Conference on Computational Science, ICCS 2020 - Amsterdam, Netherlands
Duration: 3 Jun 20205 Jun 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12143 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Computational Science, ICCS 2020
Country/TerritoryNetherlands
CityAmsterdam
Period3/06/205/06/20

Keywords

  • Artistic pencil drawing
  • Deep learning
  • Generative adversarial networks

Fingerprint

Dive into the research topics of 'Artpdgan: Creating artistic pencil drawing with key map using generative adversarial networks'. Together they form a unique fingerprint.

Cite this