TY - JOUR
T1 - Antigen specificity acquisition of adoptive CD4+ regulatory T cells via acquired peptide-MHC class I complexes
AU - Hao, Siguo
AU - Yuan, Jinying
AU - Xu, Shulin
AU - Munegowda, Manjunatha Ankathatti
AU - Deng, Yulin
AU - Gordon, John
AU - Xing, Zhou
AU - Xiang, Jim
PY - 2008/8/15
Y1 - 2008/8/15
N2 - The Ag-specific CD4+ regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4+ Tr cells is unclear. In this study, we generated IL-10- and IFN-γ-expressing type 1 CD4+ Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4+ T cells with IL-10-expressing adenovirus (AdVIL-10)-transfected and OVA-pulsed dendritic cells (DCOVA/IL-10). We demonstrated that both in vitro and in vivo DCOVA/IL-10-stimulated CD4+ Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4+ Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8+ T cells, leading to an enhanced suppression of DCOVA-induced CD8+ T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by ≈700% relative to analogous CD4+ Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4+25+ Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8+ T cell responses and antitumor immunity after uptake of DCOVA-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4+ Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4+ Tr cell suppression.
AB - The Ag-specific CD4+ regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4+ Tr cells is unclear. In this study, we generated IL-10- and IFN-γ-expressing type 1 CD4+ Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4+ T cells with IL-10-expressing adenovirus (AdVIL-10)-transfected and OVA-pulsed dendritic cells (DCOVA/IL-10). We demonstrated that both in vitro and in vivo DCOVA/IL-10-stimulated CD4+ Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4+ Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8+ T cells, leading to an enhanced suppression of DCOVA-induced CD8+ T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by ≈700% relative to analogous CD4+ Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4+25+ Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8+ T cell responses and antitumor immunity after uptake of DCOVA-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4+ Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4+ Tr cell suppression.
UR - https://www.scopus.com/pages/publications/53149113821
U2 - 10.4049/jimmunol.181.4.2428
DO - 10.4049/jimmunol.181.4.2428
M3 - Article
C2 - 18684933
AN - SCOPUS:53149113821
SN - 0022-1767
VL - 181
SP - 2428
EP - 2437
JO - Journal of Immunology
JF - Journal of Immunology
IS - 4
ER -