An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries

Meng Zhao, Xiang Chen, Xi Yao Li, Bo Quan Li, Jia Qi Huang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

276 Citations (Scopus)

Abstract

Lithium–sulfur (Li–S) batteries are considered as promising next-generation energy storage devices due to their ultrahigh theoretical energy density, where soluble lithium polysulfides are crucial in the Li–S electrochemistry as intrinsic redox mediators. However, the poor mediation capability of the intrinsic polysulfide mediators leads to sluggish redox kinetics, further rendering limited rate performances, low discharge capacity, and rapid capacity decay. Here, an organodiselenide, diphenyl diselenide (DPDSe), is proposed to accelerate the sulfur redox kinetics as a redox comediator. DPDSe spontaneously reacts with lithium polysulfides to generate lithium phenylseleno polysulfides (LiPhSePSs) with improved redox mediation capability. The as-generated LiPhSePSs afford faster sulfur redox kinetics and increase the deposition dimension of lithium sulfide. Consequently, the DPDSe comediator endows Li–S batteries with superb rate performance of 817 mAh g−1 at 2 C and remarkable cycling stability with limited anode excess. Moreover, Li–S pouch cells with the DPDSe comediator achieve an actual initial energy density of 301 Wh kg−1 and 30 stable cycles. This work demonstrates a novel redox comediation strategy with an effective organodiselenide comediator to facilitate the sulfur redox kinetics under pouch cell conditions and inspires further exploration in mediating Li–S kinetics for practical high-energy-density batteries.

Original languageEnglish
Article number2007298
JournalAdvanced Materials
Volume33
Issue number13
DOIs
Publication statusPublished - 1 Apr 2021

Keywords

  • lithium polysulfides
  • lithium–sulfur batteries
  • organodiselenides
  • redox comediators
  • sulfur redox kinetics

Fingerprint

Dive into the research topics of 'An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries'. Together they form a unique fingerprint.

Cite this