An Image Information-Based Objective Assessment Method of Technical Manipulation Skills for Intravascular Interventions

Jin Guo*, Maoxun Li, Yue Wang, Shuxiang Guo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The clinical success of vascular interventional surgery relies heavily on a surgeon’s catheter/guidewire manipulation skills and strategies. An objective and accurate assessment method plays a critical role in evaluating the surgeon’s technical manipulation skill level. Most of the existing evaluation methods incorporate the use of information technology to find more objective assessment models based on various metrics. However, in these models, sensors are often attached to the surgeon’s hands or to interventional devices for data collection, which constrains the surgeon’s operational movements or exerts an influence on the motion trajectory of interventional devices. In this paper, an image information-based assessment method is proposed for the evaluation of the surgeon’s manipulation skills without the requirement of attaching sensors to the surgeon or catheters/guidewires. Surgeons are allowed to use their natural bedside manipulation skills during the data collection process. Their manipulation features during different catheterization tasks are derived from the motion analysis of the catheter/guidewire in video sequences. Notably, data relating to the number of speed peaks, slope variations, and the number of collisions are included in the assessment. Furthermore, the contact forces, resulting from interactions between the catheter/guidewire and the vascular model, are sensed by a 6-DoF F/T sensor. A support vector machine (SVM) classification framework is developed to discriminate the surgeon’s catheterization skill levels. The experimental results demonstrate that the proposed SVM-based assessment method can obtain an accuracy of 97.02% to distinguish between the expert and novice manipulations, which is higher than that of other existing research achievements. The proposed method has great potential to facilitate skill assessment and training of novice surgeons in vascular interventional surgery.

Original languageEnglish
Article number4031
JournalSensors
Volume23
Issue number8
DOIs
Publication statusPublished - Apr 2023

Keywords

  • force and image data
  • intravascular interventions
  • machine learning
  • objective technical skill assessment

Fingerprint

Dive into the research topics of 'An Image Information-Based Objective Assessment Method of Technical Manipulation Skills for Intravascular Interventions'. Together they form a unique fingerprint.

Cite this