TY - JOUR
T1 - An experimental and modeling study of the auto-ignition of NH3/syngas mixtures in a shock tube
AU - Song, Shubao
AU - Zhang, Lin
AU - Wang, Qifan
AU - Shao, Jiankun
N1 - Publisher Copyright:
© 2024 The Combustion Institute
PY - 2025/2
Y1 - 2025/2
N2 - Ammonia (NH3) holds promise as an ideal zero-carbon fuel for modern energy systems. Co-combustion NH3 with syngas can enhance the reactivity and improve the combustion efficiency of NH3. In the current study, the auto-ignition and speciation experiments for NH3/syngas mixtures were conducted at pressures of 0.86 and 4.0 atm, within a temperature range of 1234–1620 K, and across three equivalence ratios of 0.5, 1.0, and 2.0, with syngas content of 20 %, 30 % and 50 %, respectively. To the best of our knowledge, the experimental study for NH3/syngas mixtures using shock tubes and laser absorption spectroscopy is the first in the literature. The experimental results show a similar reactivity under fuel-lean and stoichiometric conditions, which is slightly higher than the reactivity observed under fuel-rich conditions. The reactivity of the mixture is enhanced as the syngas content and pressure increase. The sensitivity analyses were conducted based on various kinetic models, and three key elementary reactions were identified that predominantly influence the oxidation of NH3/syngas mixtures under experimental conditions: R1 (N2H2+M<=>NNH+H+M), R2 (NH3+OH<=>NH2+H2O) and R3 (N2H2+H<=>NNH+H2). The rate constants of these three crucial reactions were updated based on literature data, and an updated detailed kinetic model (NH3-syngas model) was proposed based on our previous work (NH3-C2H4 model). Simulated results by the NH3-syngas model agree well with experimental data of the ignition delay times and time-histories of ammonia across different equivalence ratios, various syngas contents and pressures, as well as a series of literature data. Rate of production and sensitivity analyses were employed to elucidate the reaction pathways and crucial elementary reactions of NH3/syngas mixtures. This investigation may contribute to optimizing kinetic models between ammonia and higher carbon number fuels in the future.
AB - Ammonia (NH3) holds promise as an ideal zero-carbon fuel for modern energy systems. Co-combustion NH3 with syngas can enhance the reactivity and improve the combustion efficiency of NH3. In the current study, the auto-ignition and speciation experiments for NH3/syngas mixtures were conducted at pressures of 0.86 and 4.0 atm, within a temperature range of 1234–1620 K, and across three equivalence ratios of 0.5, 1.0, and 2.0, with syngas content of 20 %, 30 % and 50 %, respectively. To the best of our knowledge, the experimental study for NH3/syngas mixtures using shock tubes and laser absorption spectroscopy is the first in the literature. The experimental results show a similar reactivity under fuel-lean and stoichiometric conditions, which is slightly higher than the reactivity observed under fuel-rich conditions. The reactivity of the mixture is enhanced as the syngas content and pressure increase. The sensitivity analyses were conducted based on various kinetic models, and three key elementary reactions were identified that predominantly influence the oxidation of NH3/syngas mixtures under experimental conditions: R1 (N2H2+M<=>NNH+H+M), R2 (NH3+OH<=>NH2+H2O) and R3 (N2H2+H<=>NNH+H2). The rate constants of these three crucial reactions were updated based on literature data, and an updated detailed kinetic model (NH3-syngas model) was proposed based on our previous work (NH3-C2H4 model). Simulated results by the NH3-syngas model agree well with experimental data of the ignition delay times and time-histories of ammonia across different equivalence ratios, various syngas contents and pressures, as well as a series of literature data. Rate of production and sensitivity analyses were employed to elucidate the reaction pathways and crucial elementary reactions of NH3/syngas mixtures. This investigation may contribute to optimizing kinetic models between ammonia and higher carbon number fuels in the future.
KW - Ammonia
KW - Ignition delay time
KW - Kinetic model
KW - Laser absorption spectroscopy
KW - Shock tube
KW - Syngas
UR - http://www.scopus.com/inward/record.url?scp=85212045953&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2024.113918
DO - 10.1016/j.combustflame.2024.113918
M3 - Article
AN - SCOPUS:85212045953
SN - 0010-2180
VL - 272
JO - Combustion and Flame
JF - Combustion and Flame
M1 - 113918
ER -